- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Dash, Sujata (1)
-
Giri, Sourav Kumar (1)
-
Mallik, Saurav (1)
-
Pani, Subhendu Kumar (1)
-
Qin, Hong (1)
-
Shah, Mohd Asif (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper, NeuralProphet (NP), an explainable hybrid modular framework, enhances the forecasting performance of pandemics by adding two neural network modules; auto-regressor (AR) and lagged-regressor (LR). An advanced deep auto-regressor neural network (Deep-AR-Net) model is employed to implement these two modules. The enhanced NP is optimized via AdamW and Huber loss function to perform multivariate multi-step forecasting contrast to Prophet. The models are validated with COVID-19 time-series datasets. The NP’s efficiency is studied component-wise for a long-term forecast for India and an overall reduction of 60.36% and individually 34.7% by AR-module, 53.4% by LR-module in MASE compared to Prophet. The Deep-AR-Net model reduces the forecasting error of NP for all five countries, on average, by 49.21% and 46.07% for short-and-long-term, respectively. The visualizations confirm that forecasting curves are closer to the actual cases but significantly different from Prophet. Hence, it can develop a real-time decision-making system for highly infectious diseases.more » « less
An official website of the United States government
